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Role of strong electric fields in the generation of harmonics 
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Abstract. The nonlinear evaluation of the reflected and the transmitted fields of the funda- 
mental and third harmonic waves, which are generated by the interaction of an intense 
microwave with a weakly ionized nitrogen plasma slab, has been carried out by solving the 
nonlinear Maxwell equations numerically using a Runge-Kutta method. We find that an 
increase in the fundamental field increases the harmonic output. For an incident field of 
about 3 esu and of frequency w = 10" rads-', the peak power of the third harmonic 
obtained is about 0.04% of the fundamental which is in fairly good agreement with experi- 
ment. The harmonic output also increases with electron concentration in the range 
w < wp < 3w (where wp is the plasma frequency). The harmonic fields show resonant 
increase at fundamental and at harmonic frequencies. 

1. Introduction 

The nonlinear propagation of high frequency electromagnetic signals in weakly ionized 
plasmas has attracted the attention of many workers (Krenz 1965, Tang 1966, Vogel 
and Desloge 1968, Osagarvara and Mori 1969, Sodha and Kaw 1969) in recent years 
owing to its application in multiple frequency generators, plasma diagnostics etc. 
Most of these investigations have been limited to moderately strong fields which do 
not affect the plasma parameters appreciably. The solution of the Maxwell equations 
for such a nonlinear medium is obtained on the basis of the perturbation approximation 
in which the change in free-carrier parameters is assumed to be small. 

Jayaram and Tripathi (1971) have recently investigated the nonlinear response of a 
magnetoplasma to  intense electromagnetic waves beyond the perturbation limit. The 
fundamental and harmonic components of current density were evaluated. These 
calculations of harmonic current density are, however, insufficient to  give a correct 
estimate of the generated electric field because the propagation parameters of the 
fundamental and harmonic waves are strongly field dependent and may even change 
the qualitative behaviour of the generated field. Nevertheless, the evaluation of the 
electric field presents a serious problem of solving the nonlinear Maxwell equations, 

Papa and Haskell (1966) have used a Runge-Kutta method (Kuo 1965) for the 
numerical evaluation of the fundamental fields in an inhomogeneous magnetoplasma 
slab on which an elliptically polarized electromagnetic wave is incident normally. 
The DC magnetic field and electron density gradient are perpendicular to  the interfaces. 
They have obtained the reflection and transmission coefficients of the fundamental 
wave for the two cases of constant mean free path and constant collision frequency. 

By using a Runge-Kutta method, we have numerically evaluated the harmonic 
fields in a magnetoplasma when an intense microwave interacts with it. In the following 
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section expressions for the fundamental and third harmonic current densities have 
been obtained. In 0 3 a numerical evaluation of the fundamental and third harmonic 
fields, for a nitrogen plasma slab at 300 K, has been carried out. A discussion of the 
results obtained and their comparison with experiment follows in 5 4. 

2. Fundamental and third harmonic current densities 

Let us consider a slab of homogeneous weakly ionized isotropic plasma, dominated 
by electron-neutral particle collisions. A microwave is incident normally on its face 
at z = 0 ; the z axis being the direction of propagation of the wave. The electric vector 
of the wave is in the direction of the x axis. The other boundary of the plasma is at 
z = d .  A static magnetic field H ,  is applied along the z direction. 

As a result of microwave interaction with the plasma, the velocity distribution of 
electrons is changed and is given by (cf equation (8a) of Jayaram and Tripathi 1971) 

where U is the dimensionless electron velocity ; x ,  the nonlinearity parameter, is given by 

A:A:*  A ;  A ;  * + 
V ~ + ( O - ~ ~ ) ~  v2+(w+wJ2 

and A : , z  are fields of extraordinary and ordinary modes of the fundamental wave 
given by 

A i , 2  = E:fiEi, (3) 

the other symbols have their usual meaning. 
On using expression (1) for the distribution function we obtain the following expres- 

sions for the fundamental J '  and third harmonic J" current density (cf equation ( 1 2 )  
and (14) respectively of Jayaram and Tripathi 1971) : 

J:fiJ: = oA,A: , ,  (4) 
and 

where om_+ are the conductivity components for the two modes. For the fundamental 
wave 

g,!? = + w i ( y )  2 k T  3/2 fo -( u 4 f ;  1 ) du 
1 + n(u) v + i(w f we)  

and for the third harmonic wave 

The coupling coefficients y i  of equation (5) are given by 
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where I , ,  I, and I, are integrals given by 

and 

I - ---) f :  du, (11) 

with 

w,* = nw+o,. (12) 

The integrals appearing in equations (7) and (8) can be numerically evaluated for various 
velocity dependences of the collision frequency v. 

3. Evaluation of electric fields by the Runge-Kutta method 

The necessary Maxwell equations governing the electric and the magnetic vectors are 

and 

477 1 dD 
V X  H = - J + -  -, 

c c at 

where p is the magnetic permeability of the medium ( p  N 1 for plasmas) and D is the 
electric displacement vector. For fundamental fields these equations, on separating 
into real and imaginary components, can be written as 

and 

where 

= H.tfiH:, 

4xi 
S l ,+ iSl i  = 1 ---CA+, w 
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47ci 
Szr+iSzi  = 1 --om- 

0 

and r = zw/c. The subscripts r and i refer to the real and imaginary components of the 
quantities. 

For the third harmonic components we can write equations (13) and (14) as 

We may point out that in the limit of very weak collision frequency and vanishing 
magnetic fields, equation (24) reduces to 

which has a solution of the form, 

A::' = C exp{ -(3S3r)1'2r}, for S , ,  < 0 (29) 

where C is some constant. As is clearly seen from equation (26), this solution is valid 
only if (4lcio,!,:'/w) > 3. As cfi' decreases with decrease in up, below a certain value of 
up (say CO,*) this inequality is no longer satisfied. For this reason the curves correspond- 
ing to very weak collisions for low density cases in figures 1 to 5 have not been given. 

Using equations (15) to  (27) it is possible to  compute the electromagnetic fields of 
the fundamental and third harmonic waves inside and outside the plasma slab. This 
is accomplished by assuming a value for the fundamental and third harmonic com- 
ponents of the transmitted fields at z = d (because only forward propagating waves 
exist for z =- d)  and performing a fourth order Runge-Kutta step-by-step integration 
of Maxwell's equations backwards through the plasma slab. By matching the tangential 
field components across the two faces, z = 0 and z = d, of the slab it is possible to 
construct expressions for the reflected and transmitted fundamental and third harmonic 
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Figure 1. Variation of reflected third harmonic electric field with incident field in the absence 
of an external magnetic field. Curves A, B and C correspond to ( w ~ w ) ’  = 0.1, 1 and 10 
respectively and (v0/o)’ = 0.9 while curves D, E and F correspond to the same (o,/w)’ 
and ( V ~ / W ) ~  = 10. For curve C the ordinate is to be multiplied by lo3. 

waves. The reflection and transmission coefficients for the fundamental components 
of the fields are given by 
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Figure 3. Variation of reflected (full curves) and transmitted (broken curves) third harmonic 
electric field (extraordinary component) with incident field. Curves A, B and C correspond 
to (wdw)’ = 0.1, 1 and 10 respectively, (vO/w)’ = 0.9 and (wJw)  = 0.9. For curve C the 
ordinate is to be multiplied by 10’. 

I I I 

2.0 4.0 6.0 
(U, / col2 

Figure 4. Variation of reflected third harmonic field (extraordinary component) with 
normalized plasma frequency for incident field 2.2 esu. Curves A, B and C correspond to 
(o,/w) = 0.5, 1 and 3 respectively and (v0/w)* = 0.9, while curves D, E and F correspond 
to the same (w,/w) and ( V ~ / W ) ~  = 10. 
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Figure 5. Variation of transmitted third harmonic field (extraordinary component) with 
normalized plasma frequency for incident field 2.2 esu. Curves A, B and C correspond to 
(o,/o) = 0.5, 1 and 3 respectively and ( V ~ / W ) ~  = 0.9, while curves D, E and F correspond 
to the same ( W J W )  and (v0/o)' = 10. 

and 

where the subscripts 0 and E refer to the ordinary and extraordinary waves and the 
fields appearing on the right-hand side of equations (30) and (31) correspond to z = 0 
except ( A i , 2 ) d  which corresponds to  z = d. 

The evaluation of third harmonic fields is somewhat complex because the third 
harmonic field assumed at z = d must be such that the incident field for z < 0 vanishes. 
To  fulfil this condition we adopt a reverse procedure. Assuming some arbitrary value 
of the third harmonic extraordinary or ordinary mode at z = d, by using the Runge- 
Kutta method we evaluate the incident fields at z = 0 in two ways : (a)  by neglecting the 
nonlinear source term, that is, taking y? = 0 ;  and (b )  taking y i  as permitted by the 
fundamehtal fields. The former calculation gives the reflection and transmission 
coefficients for the third harmonic when nonlinear propagation characteristics intro- 
duced by the fundamental wave have been included but the source term taken to  be 
zero. When y * is taken as given by equation (8) we obtain the corresponding reflected 
and transmitted fields. We thus obtain the following expressions for the third harmonic 
reflected and transmitted fields : 

and 
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where BA:,'; and BHt,'; are the third harmonic electric and magnetic fields of extra- 
ordinary and ordinary modes at z = 0 when yi = 0 and (Ai,';)d corresponds to the 
generated fields at z = d. 

Numerical evaluation of the third harmonic fields has been carried out for a nitrogen 
plasma slab of thickness 3 cm at 300 K on an IBM-360 computer. We chose a nitrogen 
plasma to  facilitate comparison of our results with experimental results available. The 
velocity dependence of the collision cross section for nitrogen has been taken into 
account, by taking v = vou2. 

4. Discussion 

A rigorous physical interpretation of the results is very difficult because of the over- 
lap of a large number of competing processes. Nevertheless the effect of various plasma 
parameters may be understood in the following manner. 

From figures 1 and 2 we see that as the incident field increases the harmonic output 
also increases. The effect of increasing the field on the collision frequency, through the 
electron temperature, is to  increase the collisions. Normally the effect of increasing the 
collisions is to decrease the generated fields by lowering the power absorption. This 
means that the effects appearing through the propagation parameters are more important 

r 
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Figure 6. Variation of reflected third harmonic field (extraordinary component) with 
normalized cyclotron frequency for an incident field of 2.2 esu. Curves A and B correspond 
to (o,/o)~ = 0.1 and 1 respectively and ( V ~ / O ) ~  = 0.9 while curve C correspond to (w,/w)~ = 1 
and ( V ~ / O ) ~  = 002. 
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than the collision frequency dependence on the field. In the presence of a magnetic 
field (figure 3) the harmonic output shows a similar behaviour with fundamental input. 

An increase in the electronic concentration is known to increase the nonlinear 
source term linearly for harmonic generation (Ginzburg 1960). This can also be seen 
from figures 4 and 5 where the harmonic output increases with wp for the range 
o < wp < 30. The harmonic output at weak collisions (v  w) is more than that at 
strong collisions (v  > 0). 

The effect of a static magnetic field shown in figures 6 and 7 is obviously to  enhance 
the fundamental and harmonic current densities at various cyclotron resonances. At 
cyclotron resonances the harmonic power of the extraordinary mode has been found to 
increase while at off-resonance the effects are less significant. Cyclotron resonance 
effects (at o = we and 2 0  = we) have also been found to appear in the ordinary mode 
of the harmonic owing to the dependence of this mode on both modes of the fundamental 
wave. 

I t  may be mentioned here that we have not discussed the size effects (dimension 
resonances) as they are expected to be similar to the ones discussed by Jayaram and 
Tripathi (1970). 

The experimental results for third harmonic fields are rarely available, therefore a 
direct comparison of our results is not possible. The measurements of Inada er a1 (1960) 
and the calculations of Varnum and Desloge (1969) (based on estimates of harmonic 
current density, involving the inelastic collisions also) do  not give any assessment of the 
reflected and transmitted fields. Nevertheless, the ratio of peak power P3/P1 obtained 
by Inada et nl(1960) and Varnum and Desloge (1969) for w = 1.88 x 10'' rad s-' and 

I 1 , 1 , \ ,  
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Figure 7. Variation of transmitted third harmonic field (extraordinary component) with 
normalized cyclotron frequency for an incident field of 2.2 esu. Curves A and B correspond 
to (o , /w)~  = 0.1 and 1 respectively and ( V ~ / W ) ~  = 0.9 while curve C corresponds to 
( W , / O ) ~  = 1 and ( V ~ / W ) ~  = 0.02. 
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E = lo5 V m-  respectively, whereas in our case this 
turns out to be 0.4 x We see that this is in good agreement with the experimental 
results. The small discrepancy between our results and those of Inada et a1 (1960) can 
be attributed to the neglect of inelastic collisions in our analysis which may be important 
at high fields. 

are 1.2 x and 2.2 x 
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